Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
1.
J Clin Invest ; 131(15)2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34138754

RESUMO

BackgroundPyridoxine-dependent epilepsy (PDE-ALDH7A1) is an inborn error of lysine catabolism that presents with refractory epilepsy in newborns. Biallelic ALDH7A1 variants lead to deficiency of α-aminoadipic semialdehyde dehydrogenase/antiquitin, resulting in accumulation of piperideine-6-carboxylate (P6C), and secondary deficiency of the important cofactor pyridoxal-5'-phosphate (PLP, active vitamin B6) through its complexation with P6C. Vitamin B6 supplementation resolves epilepsy in patients, but intellectual disability may still develop. Early diagnosis and treatment, preferably based on newborn screening, could optimize long-term clinical outcome. However, no suitable PDE-ALDH7A1 newborn screening biomarkers are currently available.MethodsWe combined the innovative analytical methods untargeted metabolomics and infrared ion spectroscopy to discover and identify biomarkers in plasma that would allow for PDE-ALDH7A1 diagnosis in newborn screening.ResultsWe identified 2S,6S-/2S,6R-oxopropylpiperidine-2-carboxylic acid (2-OPP) as a PDE-ALDH7A1 biomarker, and confirmed 6-oxopiperidine-2-carboxylic acid (6-oxoPIP) as a biomarker. The suitability of 2-OPP as a potential PDE-ALDH7A1 newborn screening biomarker in dried bloodspots was shown. Additionally, we found that 2-OPP accumulates in brain tissue of patients and Aldh7a1-knockout mice, and induced epilepsy-like behavior in a zebrafish model system.ConclusionThis study has opened the way to newborn screening for PDE-ALDH7A1. We speculate that 2-OPP may contribute to ongoing neurotoxicity, also in treated PDE-ALDH7A1 patients. As 2-OPP formation appears to increase upon ketosis, we emphasize the importance of avoiding catabolism in PDE-ALDH7A1 patients.FundingSociety for Inborn Errors of Metabolism for Netherlands and Belgium (ESN), United for Metabolic Diseases (UMD), Stofwisselkracht, Radboud University, Canadian Institutes of Health Research, Dutch Research Council (NWO), and the European Research Council (ERC).


Assuntos
Epilepsia/metabolismo , Metabolômica , Ácidos Pipecólicos/metabolismo , Aldeído Desidrogenase/deficiência , Aldeído Desidrogenase/metabolismo , Animais , Biomarcadores/metabolismo , Criança , Epilepsia/genética , Feminino , Humanos , Camundongos , Camundongos Knockout , Espectrofotometria Infravermelho , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
2.
Theranostics ; 11(7): 3472-3488, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33537098

RESUMO

Rationale: The activity of aldehyde dehydrogenase 7A1 (ALDH7A1), an enzyme that catalyzes the lipid peroxidation of fatty aldehydes was found to be upregulated in pancreatic ductal adenocarcinoma (PDAC). ALDH7A1 knockdown significantly reduced tumor formation in PDAC. We raised a question how ALDH7A1 contributes to cancer progression. Methods: To answer the question, the role of ALDH7A1 in energy metabolism was investigated by knocking down and knockdown gene in mouse model, because the role of ALDH7A1 has been reported as a catabolic enzyme catalyzing fatty aldehyde from lipid peroxidation to fatty acid. Oxygen consumption rate (OCR), ATP production, mitochondrial membrane potential, proliferation assay and immunoblotting were performed. In in vivo study, two human PDAC cell lines were used for pre-clinical xenograft model as well as spontaneous PDAC model of KPC mice was also employed for anti-cancer therapeutic effect. Results:ALDH7A1 knockdown significantly reduced tumor formation with reduction of OCR and ATP production, which was inversely correlated with increase of 4-hydroxynonenal. This implies that ALDH7A1 is critical to process fatty aldehydes from lipid peroxidation. Overall survival of PDAC is doubled by cross breeding of KPC (KrasG12D; Trp53R172H; Pdx1-Cre) and Aldh7a1-/- mice. Conclusion: Inhibitions of ALDH7A1 and oxidative phosphorylation using gossypol and phenformin resulted in a regression of tumor formation in xenograft mice model and KPC mice model.


Assuntos
Aldeído Desidrogenase/genética , Carcinoma Ductal Pancreático/genética , Proteínas de Homeodomínio/genética , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Transativadores/genética , Proteína Supressora de Tumor p53/genética , Aldeído Desidrogenase/deficiência , Aldeídos/metabolismo , Animais , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/mortalidade , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Gossipol/farmacologia , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Camundongos , Camundongos Knockout , Camundongos Nus , Fosforilação Oxidativa/efeitos dos fármacos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Fenformin/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/deficiência , Transdução de Sinais , Análise de Sobrevida , Transativadores/deficiência , Proteína Supressora de Tumor p53/deficiência , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias Pancreáticas
3.
J Inherit Metab Dis ; 44(1): 178-192, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33200442

RESUMO

Pyridoxine-dependent epilepsy (PDE-ALDH7A1) is an autosomal recessive condition due to a deficiency of α-aminoadipic semialdehyde dehydrogenase, which is a key enzyme in lysine oxidation. PDE-ALDH7A1 is a developmental and epileptic encephalopathy that was historically and empirically treated with pharmacologic doses of pyridoxine. Despite adequate seizure control, most patients with PDE-ALDH7A1 were reported to have developmental delay and intellectual disability. To improve outcome, a lysine-restricted diet and competitive inhibition of lysine transport through the use of pharmacologic doses of arginine have been recommended as an adjunct therapy. These lysine-reduction therapies have resulted in improved biochemical parameters and cognitive development in many but not all patients. The goal of these consensus guidelines is to re-evaluate and update the two previously published recommendations for diagnosis, treatment, and follow-up of patients with PDE-ALDH7A1. Members of the International PDE Consortium initiated evidence and consensus-based process to review previous recommendations, new research findings, and relevant clinical aspects of PDE-ALDH7A1. The guideline development group included pediatric neurologists, biochemical geneticists, clinical geneticists, laboratory scientists, and metabolic dieticians representing 29 institutions from 16 countries. Consensus guidelines for the diagnosis and management of patients with PDE-ALDH7A1 are provided.


Assuntos
Arginina/administração & dosagem , Suplementos Nutricionais , Epilepsia/dietoterapia , Epilepsia/diagnóstico , Aldeído Desidrogenase/deficiência , Consenso , Epilepsia/tratamento farmacológico , Humanos , Cooperação Internacional , Lisina/deficiência , Piridoxina/uso terapêutico
4.
J Nutr ; 150(Suppl 1): 2556S-2560S, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33000154

RESUMO

Lysine is an essential amino acid, and inherited diseases of its metabolism therefore represent defects of lysine catabolism. Although some of these enzyme defects are not well described yet, glutaric aciduria type I (GA1) and antiquitin (2-aminoadipic-6-semialdehyde dehydrogenase) deficiency represent the most well-characterized diseases. GA1 is an autosomal recessive disorder due to a deficiency of glutaryl-CoA dehydrogenase. Untreated patients exhibit early onset macrocephaly and may present a neurological deterioration with regression and movement disorder at the time of a presumably "benign" infection most often during the first year of life. This is associated with a characteristic neuroimaging pattern with frontotemporal atrophy and striatal injuries. Diagnosis relies on the identification of glutaric and 3-hydroxyglutaric acid in urine along with plasma glutarylcarnitine. Treatment consists of a low-lysine diet aiming at reducing the putatively neurotoxic glutaric and 3-hydroxyglutaric acids. Additional therapeutic measures include administration of l-carnitine associated with emergency measures at the time of intercurrent illnesses aiming at preventing brain injury. Early treated (ideally through newborn screening) patients exhibit a favorable long-term neurocognitive outcome, whereas late-treated or untreated patients may present severe neurocognitive irreversible disabilities. Antiquitin deficiency is the most common form of pyridoxine-dependent epilepsy. α-Aminoadipic acid semialdehyde (AASA) and Δ-1-piperideine-6-carboxylate (P6C) accumulate proximal to the enzymatic block. P6C forms a complex with pyridoxal phosphate (PLP), a key vitamer of pyridoxine, thereby reducing PLP bioavailability and subsequently causing epilepsy. Urinary AASA is a biomarker of antiquitin deficiency. Despite seizure control, only 25% of the pyridoxine-treated patients show normal neurodevelopment. Low-lysine diet and arginine supplementation are proposed in some patients with decrease of AASA, but the impact on neurodevelopment is unclear. In summary, GA1 and antiquitin deficiency are the 2 main human defects of lysine catabolism. Both include neurological impairment. Lysine dietary restriction is a key therapy for GA1, whereas its benefits in antiquitin deficiency appear less clear.


Assuntos
Aldeído Desidrogenase/deficiência , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Encefalopatias Metabólicas Congênitas/metabolismo , Encefalopatias Metabólicas/metabolismo , Encéfalo/metabolismo , Epilepsia/metabolismo , Glutaril-CoA Desidrogenase/deficiência , Lisina/metabolismo , Ácido 2-Aminoadípico/análogos & derivados , Ácido 2-Aminoadípico/metabolismo , Aldeído Desidrogenase/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/terapia , Arginina/uso terapêutico , Encéfalo/patologia , Encefalopatias Metabólicas/terapia , Encefalopatias Metabólicas Congênitas/terapia , Carnitina/análogos & derivados , Carnitina/metabolismo , Carnitina/uso terapêutico , Epilepsia/terapia , Glutaratos/metabolismo , Glutaril-CoA Desidrogenase/metabolismo , Humanos , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Doenças Metabólicas/terapia , Fosfato de Piridoxal/metabolismo , Piridoxina/metabolismo , Piridoxina/uso terapêutico
5.
ACS Synth Biol ; 9(7): 1864-1872, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32470293

RESUMO

Chinese hamster ovary (CHO) cells are the superior host cell culture models used for the bioproduction of therapeutic proteins. One of the prerequisites for bioproduction using CHO cell lines is the need to generate stable CHO cell lines with optimal expression output. Antibiotic selection is commonly employed to isolate and select CHO cell lines with stable expression, despite its potential negative impact on cellular metabolism and expression level. Herein, we present a novel proline-based selection system for the isolation of stable CHO cell lines. The system exploits a dysfunctional proline metabolism pathway in CHO cells by using a pyrroline-5-carboxylate synthase gene as a selection marker, enabling selection to be made using proline-free media. The selection system was demonstrated by expressing green fluorescent protein (GFP) and a monoclonal antibody. When GFP was expressed, more than 90% of stable transfectants were enriched within 2 weeks of the selection period. When a monoclonal antibody was expressed, we achieved comparable titers (3.35 ± 0.47 µg/mL) with G418 and Zeocin-based selections (1.65 ± 0.46 and 2.25 ± 0.07 µg/mL, respectively). We further developed a proline-based coselection by using S. cerevisiae PRO1 and PRO2 genes as markers, which enables the generation of 99.5% double-transgenic cells. The proline-based selection expands available selection tools and provides an alternative to antibiotic-based selections in CHO cell line development.


Assuntos
Engenharia Metabólica/métodos , Prolina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Aldeído Desidrogenase/deficiência , Aldeído Desidrogenase/genética , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/genética , Células CHO , Cricetulus , Meios de Cultura/química , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Humanos , Ornitina-Oxo-Ácido Transaminase/genética , Ornitina-Oxo-Ácido Transaminase/metabolismo , Fosfotransferases (Aceptor do Grupo Carboxila)/genética , Plasmídeos/genética , Proteínas Recombinantes/biossíntese , Transfecção
6.
J Inherit Metab Dis ; 43(5): 1102-1111, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32319100

RESUMO

Rapid diagnosis and early specific treatment of metabolic epilepsies due to inborn errors of metabolism (IEMs) is crucial to avoid irreversible sequalae. Nowadays, besides the profile analysis of amino- and organic acids, a range of additional targeted assays is used for the selective screening of those diseases. This strategy can lead to long turn-around times, repeated sampling and diagnostic delays. To replace those individual targeted assays, we developed a new liquid chromatography mass spectrometry method (LC-MS/MS) for the differential diagnosis of inherited metabolic epilepsies that are potentially treatable. The method was developed to simultaneously quantify 12 metabolites (sulfocysteine, guanidinoacetate, creatine, pipecolic acid, Δ1 -piperideine-6-carboxylate (P6C), proline, Δ1 -pyrroline-5-carboxylate (P5C), and the B6 -vitamers) enabling the diagnosis of nine different treatable IEMs presenting primarily with early-onset epilepsy. Plasma and urine samples were mixed with internal standards, precipitated and the supernatants were analyzed by LC-MS/MS. In comparison with previous assays, no derivatization of the metabolites is necessary for analysis. This LC-MS method was validated for quantitative results for all metabolites except P6C and P5C for which semiquantitative results were obtained due to the absence of commercially available standards. Coefficients of variation for all analytes were below 15% and recovery rates range between 80% and 120%. Analysis of patient samples with known IEMs demonstrated the diagnostic value of the method. The presented assay covers a selected panel of biochemical markers, improves the efficiency in the laboratory, and potentially leads to faster diagnoses and earlier treatment avoiding irreversible damage in patients affected with IEMs.


Assuntos
Cromatografia Líquida/métodos , Epilepsia/sangue , Erros Inatos do Metabolismo/sangue , Convulsões/sangue , Espectrometria de Massas em Tandem/métodos , Aldeído Desidrogenase/sangue , Aldeído Desidrogenase/deficiência , Biomarcadores/sangue , Diagnóstico Diferencial , Epilepsia/diagnóstico , Humanos , Erros Inatos do Metabolismo/diagnóstico , Ácidos Picolínicos/sangue , Ácidos Pipecólicos/sangue , Convulsões/diagnóstico
7.
J Inherit Metab Dis ; 43(4): 657-670, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32017139

RESUMO

The bifunctional homooligomeric enzyme Δ1 -pyrroline-5-carboxylate synthetase (P5CS) and its encoding gene ALDH18A1 were associated with disease in 1998. Two siblings who presented paradoxical hyperammonemia (alleviated by protein), mental disability, short stature, cataracts, cutis laxa, and joint laxity, were found to carry biallelic ALDH18A1 mutations. They showed biochemical indications of decreased ornithine/proline synthesis, agreeing with the role of P5CS in the biosynthesis of these amino acids. Of 32 patients reported with this neurocutaneous syndrome, 21 familial ones hosted homozygous or compound heterozygous ALDH18A1 mutations, while 11 sporadic ones carried de novo heterozygous ALDH18A1 mutations. In 2015 to 2016, an upper motor neuron syndrome (spastic paraparesis/paraplegia SPG9) complicated with some traits of the neurocutaneous syndrome, although without report of cutis laxa, joint laxity, or herniae, was associated with monoallelic or biallelic ALDH18A1 mutations with, respectively, dominant and recessive inheritance. Of 50 SPG9 patients reported, 14 and 36 (34/2 familial/sporadic) carried, respectively, biallelic and monoallelic mutations. Thus, two neurocutaneous syndromes (recessive and dominant cutis laxa 3, abbreviated ARCL3A and ADCL3, respectively) and two SPG9 syndromes (recessive SPG9B and dominant SPG9A) are caused by essentially different spectra of ALDH18A1 mutations. On the bases of the clinical data (including our own prior patients' reports), the ALDH18A1 mutations spectra, and our knowledge on the P5CS protein, we conclude that the four syndromes share the same pathogenic mechanisms based on decreased P5CS function. Thus, these syndromes represent a continuum of increasing severity (SPG9A < SPG9B < ADCL3 ≤ ARCL3A) of the same disease, P5CS deficiency, in which the dominant mutations cause loss-of-function by dominant-negative mechanisms.


Assuntos
Aldeído Desidrogenase/genética , Osso e Ossos/anormalidades , Catarata/genética , Transtornos do Crescimento/genética , Paraplegia Espástica Hereditária/genética , Aldeído Desidrogenase/deficiência , Humanos , Mutação , Linhagem , Fenótipo , Ureia/metabolismo
8.
J Inherit Metab Dis ; 43(4): 891-900, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31930735

RESUMO

Antiquitin (ATQ) deficiency leads to tissue, plasma, and urinary accumulation of alpha-aminoadipic semialdehyde (AASA) and its Schiff base delta-1-piperideine-6-carboxylate (P6C). Although genetic testing of ALDH7A1 is the most definitive diagnostic method, quantifications of pathognomonic metabolites are important for the diagnosis and evaluation of therapeutic and dietary interventions. Current metabolite quantification methods use laborious, technically highly complex, and expensive liquid chromatography-tandem mass spectro-metry, which is available only in selected laboratories worldwide. Incubation of ortho-aminobenzaldehyde (oABA) with P6C leads to the formation of a triple aromatic ring structure with characteristic absorption and fluorescence properties. The mean concentration of P6C in nine urine samples from seven ATQ-deficient patients under standard treatment protocols was statistically highly significantly different (P < .001) compared to the mean of 74 healthy controls aged between 2 months and 57 years. Using this limited data set the specificity and sensitivity is 100% for all tested age groups using a P6C cut-off of 2.11 µmol/mmol creatinine, which represents the 99% prediction interval of the P6C concentrations in 17 control urine samples from children below 6 years of age. Plasma P6C concentrations were only elevated in one ATQ subject, possibly because P6C is trapped by pyridoxal-5-phosphate (PLP) blocking fusing with oABA. Nevertheless, both urine and plasma samples were amenable to the quantification of exogenous P6C with high response rates. The P6C quantification method using fusion of oABA with P6C is fast, simple, and inexpensive and might be readily implemented into routine clinical diagnostic laboratories for the early diagnosis of neonatal pyridoxine-dependent epilepsy.


Assuntos
Aldeído Desidrogenase/deficiência , Benzaldeídos/urina , Epilepsia/urina , Ácidos Picolínicos/urina , Adolescente , Adulto , Aldeído Desidrogenase/genética , Estudos de Casos e Controles , Criança , Pré-Escolar , Dieta , Epilepsia/diagnóstico , Epilepsia/genética , Epilepsia/metabolismo , Feminino , Humanos , Lactente , Lisina/metabolismo , Masculino , Pessoa de Meia-Idade , Adulto Jovem
9.
J Hepatol ; 72(4): 725-735, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31726117

RESUMO

BACKGROUND & AIM: Under the regulation of various oncogenic pathways, cancer cells undergo adaptive metabolic programming to maintain specific metabolic states that support their uncontrolled proliferation. As it has been difficult to directly and effectively inhibit oncogenic signaling cascades with pharmaceutical compounds, focusing on the downstream metabolic pathways that enable indefinite growth may provide therapeutic opportunities. Thus, we sought to characterize metabolic changes in hepatocellular carcinoma (HCC) development and identify metabolic targets required for tumorigenesis. METHODS: We compared gene expression profiles of Morris Hepatoma (MH3924a) and DEN (diethylnitrosamine)-induced HCC models to those of liver tissues from normal and rapidly regenerating liver models, and performed gain- and loss-of-function studies of the identified gene targets for their roles in cancer cell proliferation in vitro and in vivo. RESULTS: The proline biosynthetic enzyme PYCR1 (pyrroline-5-carboxylate reductase 1) was identified as one of the most upregulated genes in the HCC models. Knockdown of PYCR1 potently reduced cell proliferation of multiple HCC cell lines in vitro and tumor growth in vivo. Conversely, overexpression of PYCR1 enhanced the proliferation of the HCC cell lines. Importantly, PYCR1 expression was not elevated in the regenerating liver, and KD or overexpression of PYCR1 had no effect on proliferation of non-cancerous cells. Besides PYCR1, we found that additional proline biosynthetic enzymes, such as ALDH18A1, were upregulated in HCC models and also regulated HCC cell proliferation. Clinical data demonstrated that PYCR1 expression was increased in HCC, correlated with tumor grade, and was an independent predictor of clinical outcome. CONCLUSION: Enhanced expression of proline biosynthetic enzymes promotes HCC cell proliferation. Inhibition of PYCR1 or ALDH18A1 may be a novel therapeutic strategy to target HCC. LAY SUMMARY: Even with the recently approved immunotherapies against liver cancer, currently available medications show limited clinical benefits or efficacy in the majority of patients. As such, it remains a top priority to discover new targets for effective liver cancer treatment. Here, we identify a critical role for the proline biosynthetic pathway in liver cancer development, and demonstrate that targeting key proteins in the pathway, namely PYCR1 and ALDH18A1, may be a novel therapeutic strategy for liver cancer.


Assuntos
Carcinogênese/metabolismo , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas/metabolismo , Prolina/biossíntese , Transdução de Sinais/genética , Aldeído Desidrogenase/deficiência , Aldeído Desidrogenase/genética , Animais , Carcinogênese/genética , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/patologia , Proliferação de Células/genética , Dietilnitrosamina/efeitos adversos , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HEK293 , Células HaCaT , Células Hep G2 , Humanos , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Camundongos SCID , Pirrolina Carboxilato Redutases/deficiência , Pirrolina Carboxilato Redutases/genética , Ratos , Transcriptoma , Transfecção , Carga Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto , delta-1-Pirrolina-5-Carboxilato Redutase
10.
Sci Rep ; 9(1): 16313, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31705020

RESUMO

The major source of ATP in cancer cells remains unclear. Here, we examined energy metabolism in gastric cancer cells and found increased fatty acid oxidation and increased expression of ALDH3A1. Metabolic analysis showed that lipid peroxidation by reactive oxygen species led to spontaneous production of 4-hydroxynonenal, which was converted to fatty acids with NADH production by ALDH3A1, resulting in further fatty acid oxidation. Inhibition of ALDH3A1 by knock down using siRNA of ALDH3A1 resulted in significantly reduced ATP production by cancer cells, leading to apoptosis. Oxidative phosphorylation by mitochondria in gastric cancer cells was driven by NADH supplied via fatty acid oxidation. Therefore, blockade of ALDH3A1 together with mitochondrial complex I using gossypol and phenformin led to significant therapeutic effects in a preclinical gastric cancer model.


Assuntos
Aldeído Desidrogenase/metabolismo , Ácidos Graxos/metabolismo , Neoplasias Gástricas/metabolismo , Trifosfato de Adenosina/biossíntese , Aldeído Desidrogenase/deficiência , Aldeído Desidrogenase/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Técnicas de Silenciamento de Genes , Gossipol/farmacologia , Humanos , Masculino , Camundongos , Oxirredução , Fenformin/farmacologia , Neoplasias Gástricas/patologia
11.
J Inherit Metab Dis ; 42(4): 620-628, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30767241

RESUMO

Deficiency of antiquitin (ATQ), an enzyme involved in lysine degradation, is the major cause of vitamin B6 -dependent epilepsy. Accumulation of the potentially neurotoxic α-aminoadipic semialdehyde (AASA) may contribute to frequently associated developmental delay. AASA is formed by α-aminoadipic semialdehyde synthase (AASS) via the saccharopine pathway of lysine degradation, or, as has been postulated, by the pipecolic acid (PA) pathway, and then converted to α-aminoadipic acid by ATQ. The PA pathway has been considered to be the predominant pathway of lysine degradation in mammalian brain; however, this was refuted by recent studies in mouse. Consequently, inhibition of AASS was proposed as a potential new treatment option for ATQ deficiency. It is therefore of utmost importance to determine whether the saccharopine pathway is also predominant in human brain cells. The route of lysine degradation was analyzed by isotopic tracing studies in cultured human astrocytes, ReNcell CX human neuronal progenitor cells and human fibroblasts, and expression of enzymes of the two lysine degradation pathways was determined by Western blot. Lysine degradation was only detected through the saccharopine pathway in all cell types studied. The enrichment of 15 N-glutamate as a side product of AASA formation through AASS furthermore demonstrated activity of the saccharopine pathway. We provide first evidence that the saccharopine pathway is the major route of lysine degradation in cultured human brain cells. These results support inhibition of the saccharopine pathway as a new treatment option for ATQ deficiency.


Assuntos
Ácido 2-Aminoadípico/análogos & derivados , Aldeído Desidrogenase/deficiência , Epilepsia/metabolismo , Lisina/análogos & derivados , Lisina/metabolismo , Ácido 2-Aminoadípico/metabolismo , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Epilepsia/genética , Humanos , Redes e Vias Metabólicas , Ácidos Pipecólicos/metabolismo , Vitamina B 6/uso terapêutico
12.
Exp Mol Pathol ; 105(1): 63-70, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29859945

RESUMO

Disease progression in alcoholic and non-alcoholic fatty liver disease shows sex-specific differences and is influenced by mechanisms linked to oxidative stress. Acetaldehyde plays a critical pathogenic role but its effects are mitigated by the activity of aldehyde dehydrogenases. Aldehyde dehydrogenase 1b1 (Aldh1b1) is the aldehyde dehydrogenase isoform with the second highest affinity for acetaldehyde after Aldh2, and is highly expressed in the intestine and liver. We examined sex differences and the effect of Aldh1b1 depletion in a murine model of chronic alcohol-induced liver disease. Male and female wild-type and Aldh1b1-depleted mice received either ethanol (10-20% v/v) in drinking water or water alone for one year, and livers were examined histopathologically, histochemically and by immunohistochemistry. A significant increase in hepatic steatosis was observed in female mice after one year of ethanol consumption, and expression of ethanol-metabolising enzymes and up-regulation by ethanol was also sex-dependent. Ethanol-induced hyperproliferation of hepatocytes was observed in female and male wild-type mice, and Aldh1b1 depletion enhanced this effect in males. Further, one ethanol-treated, Aldh1b1-depleted male developed a steatohepatitic hepatocellular carcinoma. These sex-specific differences in susceptibility to hepatic steatosis and disease progression may be related to differences in expression of ethanol-metabolising enzymes, informing the clinically significant differences. Aldh1b1 plays a role in protection from ethanol-induced hepatocellular hyperproliferation and may protect from tumour development.


Assuntos
Consumo de Bebidas Alcoólicas/patologia , Aldeído Desidrogenase/deficiência , Carcinoma Hepatocelular/patologia , Fígado Gorduroso Alcoólico/patologia , Neoplasias Hepáticas/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Caracteres Sexuais , Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/metabolismo , Família Aldeído Desidrogenase 1 , Aldeído-Desidrogenase Mitocondrial , Animais , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/metabolismo , Suscetibilidade a Doenças , Fígado Gorduroso Alcoólico/etiologia , Fígado Gorduroso Alcoólico/metabolismo , Feminino , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo
13.
Neuropediatrics ; 49(2): 154-157, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29401530

RESUMO

Antiquitin deficiency is the most prevalent form of pyridoxine-dependent epilepsy. While most patients present with neonatal onset of therapy-resistant seizures, a few cases with late-onset during infancy have been described. Here, we describe the juvenile onset of epilepsy at the age of 17 years due to antiquitin deficiency in an Indian female with homozygosity for the most prevalent ALDH7A1 missense mutation, c.1279G > C; p.Glu427Gln in exon 14. The diagnosis was established along familial cosegregation analysis for an affected offspring, that had neonatal pyridoxine responsive seizures and had been found to be compound heterozygous for c.1279G > C; p.Glu427Gln in exon 14 and a nonsense mutation c.796C > T; p.Arg266* in exon 9. While seizures in the mother had been incompletely controlled by levetiracetam, she remained seizure-free on pyridoxine monotherapy, 200 mg/day. Her fourth pregnancy resulted in a female affected offspring, who was treated prospectively and never developed seizures with a normal outcome at age 2 years while on pyridoxine. This report illustrates that the phenotypic spectrum of antiquitin deficiency is still underestimated and that this treatable inborn error of metabolism has to be considered in case of therapy-resistant seizures even at older age. It furthermore supports prospective in utero treatment with pyridoxine in forthcoming pregnancies at risk.


Assuntos
Aldeído Desidrogenase/deficiência , Epilepsia/etiologia , Epilepsia/genética , Doenças Metabólicas/complicações , Doenças Metabólicas/genética , Idade de Início , Aldeído Desidrogenase/genética , Epilepsia/sangue , Epilepsia/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Doenças Metabólicas/sangue , Doenças Metabólicas/diagnóstico por imagem , Ácidos Pipecólicos/sangue , Adulto Jovem
14.
Sci Rep ; 8(1): 2936, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29440669

RESUMO

Aldehyde dehydrogenase enzymes (ALDHs) catalyze the oxidation of aliphatic and aromatic aldehydes to their corresponding carboxylic acids using NAD+ or NADP+ as cofactors and generating NADH or NADPH. Previous studies mainly focused on the ALDH role in detoxifying toxic aldehydes but their effect on the cellular NAD(P)H contents has so far been overlooked. Here, we investigated whether the ALDHs influence the cellular redox homeostasis. We used a double T-DNA insertion mutant that is defective in representative members of Arabidopsis thaliana ALDH families 3 (ALDH3I1) and 7 (ALDH7B4), and we examined the pyridine nucleotide pools, glutathione content, and the photosynthetic capacity of the aldh mutants in comparison with the wild type. The loss of function of ALDH3I1 and ALDH7B4 led to a decrease of NAD(P)H, NAD(P)H/NAD(P) ratio, and an alteration of the glutathione pools. The aldh double mutant had higher glucose-6-phosphate dehydrogenase activity than the wild type, indicating a high demand for reduced pyridine nucleotides. Moreover, the mutant had a reduced quantum yield of photosystem II and photosynthetic capacity at relatively high light intensities compared to the wild type. Altogether, our data revealed a role of ALDHs as major contributors to the homeostasis of pyridine nucleotides in plants.


Assuntos
Aldeído Desidrogenase/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Homeostase , NADP/metabolismo , NAD/metabolismo , Aldeído Desidrogenase/deficiência , Aldeído Desidrogenase/genética , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Técnicas de Inativação de Genes , Fotossíntese
15.
Genetics ; 207(4): 1501-1518, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29061647

RESUMO

Pyridoxine-dependent epilepsy (PDE) is a rare disease characterized by mutations in the lysine degradation gene ALDH7A1 leading to recurrent neonatal seizures, which are uniquely alleviated by high doses of pyridoxine or pyridoxal 5'-phosphate (vitamin B6 vitamers). Despite treatment, neurodevelopmental disabilities are still observed in most PDE patients underlining the need for adjunct therapies. Over 60 years after the initial description of PDE, we report the first animal model for this disease: an aldh7a1-null zebrafish (Danio rerio) displaying deficient lysine metabolism and spontaneous and recurrent seizures in the larval stage (10 days postfertilization). Epileptiform electrographic activity was observed uniquely in mutants as a series of population bursts in tectal recordings. Remarkably, as is the case in human PDE, the seizures show an almost immediate sensitivity to pyridoxine and pyridoxal 5'-phosphate, with a resulting extension of the life span. Lysine supplementation aggravates the phenotype, inducing earlier seizure onset and death. By using mass spectrometry techniques, we further explored the metabolic effect of aldh7a1 knockout. Impaired lysine degradation with accumulation of PDE biomarkers, B6 deficiency, and low γ-aminobutyric acid levels were observed in the aldh7a1-/- larvae, which may play a significant role in the seizure phenotype and PDE pathogenesis. This novel model provides valuable insights into PDE pathophysiology; further research may offer new opportunities for drug discovery to control seizure activity and improve neurodevelopmental outcomes for PDE.


Assuntos
Aldeído Desidrogenase/genética , Epilepsia/genética , Lisina/metabolismo , Convulsões/genética , Aldeído Desidrogenase/deficiência , Animais , Modelos Animais de Doenças , Epilepsia/metabolismo , Epilepsia/fisiopatologia , Técnicas de Inativação de Genes , Humanos , Lisina/deficiência , Mutação , Piridoxina/metabolismo , Convulsões/metabolismo , Convulsões/fisiopatologia , Vitamina B 6/genética , Vitamina B 6/metabolismo , Peixe-Zebra/genética , Ácido gama-Aminobutírico/genética , Ácido gama-Aminobutírico/metabolismo
16.
Haematologica ; 102(6): 1054-1065, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28280079

RESUMO

Aldehyde dehydrogenase 1A1 (ALDH1A1) activity is high in hematopoietic stem cells and functions in part to protect stem cells from reactive aldehydes and other toxic compounds. In contrast, we found that approximately 25% of all acute myeloid leukemias expressed low or undetectable levels of ALDH1A1 and that this ALDH1A1- subset of leukemias correlates with good prognosis cytogenetics. ALDH1A1- cell lines as well as primary leukemia cells were found to be sensitive to treatment with compounds that directly and indirectly generate toxic ALDH substrates including 4-hydroxynonenal and the clinically relevant compounds arsenic trioxide and 4-hydroperoxycyclophosphamide. In contrast, normal hematopoietic stem cells were relatively resistant to these compounds. Using a murine xenotransplant model to emulate a clinical treatment strategy, established ALDH1A1- leukemias were also sensitive to in vivo treatment with cyclophosphamide combined with arsenic trioxide. These results demonstrate that targeting ALDH1A1- leukemic cells with toxic ALDH1A1 substrates such as arsenic and cyclophosphamide may be a novel targeted therapeutic strategy for this subset of acute myeloid leukemias.


Assuntos
Aldeído Desidrogenase/deficiência , Quimioterapia Combinada/métodos , Leucemia Mieloide Aguda/tratamento farmacológico , Família Aldeído Desidrogenase 1 , Animais , Trióxido de Arsênio , Arsenicais/uso terapêutico , Células Cultivadas , Ciclofosfamida/uso terapêutico , Xenoenxertos , Humanos , Leucemia Mieloide Aguda/enzimologia , Camundongos , Terapia de Alvo Molecular , Óxidos/uso terapêutico , Retinal Desidrogenase
17.
Chem Biol Interact ; 276: 15-22, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28254523

RESUMO

ALDH16A1 is a novel member of the ALDH superfamily that is enzymatically-inactive and highly expressed in the kidney. Recent studies identified an association between a rare missense single nucleotide variant (SNV) in the ALDH16A1 gene and elevated serum uric acid levels and gout. The present study explores the mechanisms by which ALDH16A1 influences uric acid homeostasis in the kidney. We generated and validated a mouse line with global disruption of the Aldh16a1 gene through gene targeting and performed RNA-seq analyses in the kidney of wild-type (WT) and Aldh16a1 knockout (KO) mice, along with plasma metabolomics. We found that ALDH16A1 is expressed in proximal and distal convoluted tubule cells in the cortex of the kidney and in zone 3 hepatocytes. RNA-seq and gene ontology enrichment analyses showed that cellular lipid and lipid metabolic processes are up-regulated. Three transporters localized in the apical membrane of the proximal convoluted tubule of the kidney known to influence urate/uric acid homeostasis were found to be up-regulated (Abcc4, Slc16a9) or down-regulated (Slc17a3). An initial metabolomics analysis in plasma revealed an altered lipid profile in KO mice that is in agreement with our RNA-seq analysis. This is the first study demonstrating a functional role of ALDH16A1 in the kidney.


Assuntos
Aldeído Desidrogenase/genética , Rim/metabolismo , Aldeído Desidrogenase/deficiência , Animais , Regulação para Baixo , Perfilação da Expressão Gênica , Rim/patologia , Lipídeos/sangue , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Mutação de Sentido Incorreto , Análise de Sequência de RNA , Proteínas Cotransportadoras de Sódio-Fosfato Tipo I/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo I/metabolismo , Regulação para Cima
18.
Chem Biol Interact ; 276: 9-14, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28038895

RESUMO

ALDH3A1 is a corneal crystallin that protects ocular tissues from ultraviolet radiation through catalytic and non-catalytic functions. In addition, ALDH3A1 plays a functional role in corneal epithelial homeostasis by simultaneously modulating proliferation and differentiation. We have previously shown that Aldh3a1 knockout mice in a C57B6/129sV mixed genetic background develop lens cataracts. In the current study, we evaluated the corneal phenotype of Aldh3a1 knockout mice bred into a C57B/6J congenic background (KO). In vivo confocal microscopy examination of KO and wild-type (WT) corneas revealed KO mice to exhibit corneal haze, manifesting marked light scattering from corneal stroma. This corneal phenotype was further characterized by Imaging Mass Spectrometry (IMS) with spatial resolution that revealed a trilayer structure based on differential lipid localization. In these preliminary studies, no differences were observed in lipid profiles from KO relative to WT mice; however, changes in protein profiles of acyl-CoA binding protein (m/z 9966) and histone H4.4 (m/z 11308) were found to be increased in the corneal epithelial layer of KO mice. This is the first study to use IMS to characterize endogenous proteins and lipids in corneal tissue and to molecularly explore the corneal haze phenotype. Taken together, the current study presents the first genetic animal model of cellular-induced corneal haze due to the loss of a corneal crystallin, and strongly supports the notion that ALDH3A1 is critical to cellular transparency. Finally, IMS represents a valuable new approach to reveal molecular changes underlying corneal disease.


Assuntos
Aldeído Desidrogenase/genética , Córnea/metabolismo , Aldeído Desidrogenase/deficiência , Animais , Córnea/química , Córnea/patologia , Doenças da Córnea/metabolismo , Doenças da Córnea/patologia , Substância Própria/fisiologia , Inibidor da Ligação a Diazepam/química , Inibidor da Ligação a Diazepam/metabolismo , Modelos Animais de Doenças , Difusão Dinâmica da Luz , Epitélio/fisiologia , Epitélio Corneano/fisiologia , Histonas/química , Histonas/metabolismo , Cristalino/metabolismo , Lipídeos/química , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Fenótipo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA